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Società Italiana di Fisica
Springer-Verlag 2000

Metastable states of spin glasses on random thin graphs

D.S. Deana

IRSAMC, Laboratoire de Physique Quantique, Université Paul Sabatier, 118 route de Narbonne,
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Abstract. In this paper we calculate the mean number of metastable states for spin glasses on so called
random thin graphs with couplings taken from a symmetric binary distribution ±J . Thin graphs are graphs
where the local connectivity of each site is fixed to some value c. As in totally connected mean field models
we find that the number of metastable states increases exponentially with the system size. Furthermore
we find that the average number of metastable states decreases as c in agreement with previous studies
showing that finite connectivity corrections of order 1/c increase the number of metastable states with
respect to the totally connected mean field limit. We also prove that the average number of metastable
states in the limit c → ∞ is finite and converges to the average number of metastable states in the
Sherrington-Kirkpatrick model. An annealed calculation for the number of metastable states NMS(E) of
energy E is also carried out giving a lower bound on the ground state energy of these spin glasses. For
small c one may obtain analytic expressions for 〈NMS(E)〉.

PACS. 05.20.-y Classical statistical mechanics – 75.10.Nr Spin glasses and other random models

1 Introduction

The nature of the spin glass phase in finite dimen-
sions is still, after more than twenty years of study, a
widely contested area of condensed matter physics [1].
One hand the droplet or scaling picture [2,3] suggests
that finite dimensional spin glasses may be described
by a two phase picture as in a ferromagnet and on the
other hand mean field calculations on spin glass mod-
els suggest that there are an exponentially large num-
ber of pure states organised in an ultrametric geome-
try coming from the Parisi scheme of replica symmetry
breaking [4]. If the latter point of view is correct one
should certainly see at zero temperature a large num-
ber of metastable states, reflecting the complexity of the
free energy landscape (however the reader is referred to
the interesting discussion of the relevance of metastable
states to pure states in [5]). There has been a consider-
able amount of effort to analyse the metastable states
in the Sherrington-Kirkpatrick mean field model [6–11]
and also the number of solutions of the TAP mean field
equations for this model (the generalisation of metastable
states to finite temperature) [12,13]. Calculations on this
model demonstrate the existence of an exponentially large
(in terms of the number of spins N) number of metastable
states and the continuing existence of a macroscopic en-
tropy of metastable states even at arbitrarily high vales
of a uniform magnetic field (in agreement with the di-
vergence of the Almeida Thouless line at zero tempera-
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ture) [14]. This latter fact is clearly a pathology of the
totally connected geometry of the SK model. In the SK
model each spin is connected to all the other spins and the
existence of the thermodynamic limit is ensured by scaling
the couplings by a factor 1/

√
N in the case of symmetric

distributions. This scaling of the interaction strength with
the system size is clearly undesirable when one wishes to
make a connection with the finite dimensional analogue,
the Edwards Anderson model, and as remarked earlier the
survival of the Parisi scheme of replica symmetry break-
ing to finite dimensional systems is still hotly debated.
Corrections to order 1/c about mean field theory [6] seem
to suggest an enhancement of the number of metastable
states when the dimension is reduced – at odds with the
naive intuition that increasing the connectivity should in-
crease the complexity of the system and hence give rise to
more local minima in the energy landscape.

In this paper we present the calculation of the aver-
age number of metastable states for spin glasses on thin
graphs, these models have been extensively studied in [15]
and whilst accessible to mean field treatment each spin
interacts with a fixed number (denoted here by c) of other
spins. It is clear that in these models a sufficiently large ex-
ternal field will impose the existence of a single metastable
at zero temperature. In this case the nature of the distri-
bution of the interactions may be expected to play a role,
in the Sherrington-Kirkpatrick model the nature of the
interactions is wiped out by the central limit theorem.
Another model of finite connectivity but where the local
connectivity fluctuates is the Viana Bray model, this was
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the first of these type of models to be studied [16]. The
drawback with these types of finite connectivity models is
that the spin glass phase must be characterised by all of
the multi-spin overlaps possible (in the SK model one can
use simply the two spin overlap 〈σaσb〉 where a and b are
distinct replica indices (see [17] for a very clear discussion
of the replica formalism for dilute models). This additional
technical difficulty to date has hindered the application
of a replica symmetry breaking scheme in these models,
although it has been shown that the replica symmetric so-
lution is neither stable at the transition temperature, nor
at zero temperature in a number of cases [18].

The advantage of a metastable state calculation is
that, while it only gives an indication of the possible na-
ture of the spin glass phase, one may carry out calculations
without replicas.

2 Basic formalism

The spin glass model we shall consider has the
Hamiltonian

H = −1
2

∑
j 6=i

JijnijSiSj (1)

where the Si are Ising spins, nij is equal to one if the
sites i and j are connected and the Jij are taken from
a binary distribution where Jij = −1 with probability
half and Jij = 1 with probability half. The techniques
used in this paper can also be used in the case of other
symmetric probability distributions, such as the Gaussian
distribution, however the advantage with the binary dis-
tribution is that one may find analytical expressions for
certain quantities that would require numerical solution in
the case of other distributions. A metastable state is de-
fined to be a configuration where if one changes the sign
of any given spin the energy does not decrease, for the
purposes of this paper we shall include the marginal, case
where the energy does not change, as being metastable.
With this definition number of metastable states is given
by [6,9,8]

NMS = Tr
N∏
i=1

θ

∑
j 6=i

JijnijSiSj

 . (2)

The fact that we include the marginal case implies that
here θ(x) the Heaviside step function is taken such that
θ(0) = 1. One may exploit the parity of the distribution of
the Jij by making a gauge transformation Jij → JijSiSj
[6,9] to obtain

〈NMS〉 = 2N
〈

N∏
i=1

θ

∑
j 6=i

Jijnij

〉 . (3)

Here we are obliged to discuss the construction of the thin
graphs. One may generate these graphs by considering pla-

nar Feynman diagrams as in [19], however we shall con-
struct them by selecting the graphs of fixed local connec-
tivity from a larger ensemble of random graphs, that is the
type of random graph found in the Viana Bray spin glass
model [16]. These random graphs are simply constructed
as follows: any two points are connected with probabil-
ity p/N . Hence nij is equal to one with probability p/N
and zero with probability 1− p

N . Here p is some arbitrary
number of order one and we shall see that the results one
obtains are independent of the choice of p. If we denote
the average on a random graph (with a specified value of
p) by 〈·〉p then the induced average over the subset of thin
graphs of connectivity c is given by

〈F 〉 =

〈
F
∏N
i=1 δ

P
i6=j nij ,c

〉
p

M(N, c, p)
(4)

where

M(N, c, p) =

〈
N∏
i=1

δP
i6=j nij ,c

〉
p

(5)

is the average number of thin graphs of connectivity c
generated by the random graph ensemble for a given
p. Expressing the Kronecker delta functions as Fourier
integrals one finds:

M(N, c, p) =〈
1

(2π)N

∫ 2π

0

∏
i

dλi exp

i∑
i6=j

λinij − ic
∑
i

λi

〉

=
1

(2π)N

×
∫ 2π

0

∏
i

dλi exp(−icλi)
∏
i<j

(
1− p

N
+
p

N
exp(i(λi+λj))

)
=

1
(2π)N

∫ 2π

0

∏
i

dλi exp(−icλi)

× exp

−Np
2

+
p

2N

∑
ij

exp (i(λi + λj)) +O(1)


where we have neglected terms of O(1) in the exponential
above. We now carry out a Hubbard-Stratonovich trans-
formation yielding

M(N, c, p) =
N

1
2

(2π)N+ 1
2

∫
dz exp

(
−Nz

2

2
− Np

2

)
×
∏
i

exp
(
−icλi + p

1
2 z exp(iλi)

)
dλi

= A

∫
dz exp(NS[z]) (6)
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where A is a constant term containing non-extensive terms
in N and

S[z] =
−z2

2
+ ln

(∫ 2π

0

dλ exp
(
−icλ+ p

1
2 z exp(iλ)

))
− ln(2π)− p

2

=
−z2

2
+ c ln(z) +

c

2
ln(p)− ln(c!)− p

2
· (7)

The integral over z may now be evaluated by the saddle
point method at the maximum of S given by its value at
z∗ = c

1
2 leading to the final result

ln(M(N, c, p))
N

= sup
z
S[z] (8)

=
1
2
c (ln(c) + ln(p)− 1)− ln(c!)− p

2
·

It is worth noting that the value of p maximising the av-
erage number of thin graphs of connectivity c is p = c as
one would expect.

In the notation set up so far we have that

〈NMS〉 =
D(N, c, p)
M(N, c, p)

(9)

where

D(N, c, p) =

〈〈 〈
N∏
i=1

θ

∑
j 6=i

Jijnij

 δP
i6=j nij ,c

〉
p

〉〉
J

(10)

where 〈〈·〉〉J indicates the average over the couplings.
Using the representation

θ(z) =
1

2π

∫ ∞
0−

dx
∫ ∞
−∞

dλ∗ exp(−iλ∗(z − x)) (11)

we obtain

D(N, c, p) =

〈〈〈
1

2Nπ2N

∫ ∏
i

dλidλ∗i dxi

× exp

−ic∑
i

λi +
∑
i

xiλ
∗
i + i

∑
i6=j

nijλi

−i
∑
i<j

nijJij(λ∗i + λ∗j )

〉
p

〉〉
J

. (12)

Carrying out the average over the nij one obtains

D(N, c, p) =
1

2Nπ2N

∫ ∏
i

dλidλ∗i dxi

× exp

(
−ic

∑
i

λi +
∑
i

xiλ
∗
i −

Np

2

+
p

2N

∑
ij

〈〈
exp

(
i
(
λi + λj − Jij(λ∗i + λ∗j )

))〉〉
J

 .

(13)

We emphasise that the disorder average here is an an-
nealed one as one is computing 〈NMS〉 and not 〈ln(NMS)〉.
For the symmetric binary distribution considered here one
finds

D(N, c, p) =
1

2Nπ2N

∫ ∏
i

dλidλ∗i dxi

× exp

(
−ic

∑
i

λi +
∑
i

xiλ
∗
i −

Np

2

+
p

4N

∑
ij

exp
(
i(λi + λj − λ∗i − λ∗j )

)
+

p

4N

∑
ij

exp
(
i(λi + λj + λ∗i + λ∗j )

) .

(14)

Making a Hubbard Stratonovich transformation to decou-
ple the two interacting terms one obtains one may carry
out the λ, λ∗ and x integrations site by site to obtain

D(N, c, p) =
N

2π2Nπ2N

∫
dz−dz+ exp(NS∗∗[z+, z−])

(15)

where

S∗∗[z+, z−] = −z
2
+

2
− z2
−
2
− p

2

+ ln

[∫
dλdλ∗dx exp

((p
2

) 1
2
z+ exp (i(λ+ λ∗))

+
(p

2

) 1
2
z− exp (i(λ− λ∗))− icλ+ iλ∗x

)]
. (16)

Recalling that the λ integration is on (0, 2π), the λ∗ inte-
gration is on (−∞,∞) and the x integration is on [0−,∞]
(because we have chosen to take θ(0) = 1) one may sim-
plify, after some algebra, the integral in the logarithm
in (16) to obtain

S∗∗[z+, z−] = −z
2
+

2
− z2
−
2
− p

2
+
c

2
(ln(p)− ln(2))

+ 2 ln(2π) + ln

 c∑
m≥ c2

zc−m+ zm−
m!(c−m)!

 · (17)

The remaining integrals may be evaluated by the saddle
point method, collecting the extensive terms in N and
normalising by the term M(N, c, p) we find the result

ln(〈NMS〉)
N

= sup
{z+,z−}

S∗ [z+, z−] (18)

where

S∗[z+, z−] = −1
2
z2

+ −
1
2
z2
− + ln

 c∑
m≥ c2

c!zc−m+ zm−
m!(c−m)!


+ ln(2)

(
1− c

2

)
+

1
2
c(1− ln(c)) (19)
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where we see that the dependence on p has disappeared
(this is normal as the introduction of p was as a mathe-
matical artifact to construct the thin graphs). Making the
change of variables z− = µz+ in equation (19) one may
solve the saddle point equation explicitly for z+ and one
finds that

ln(〈NMS〉)
N

= sup
µ
S [µ] (20)

where

S[µ] = −1
2
c ln(1 + µ2) + ln(2)

(
1− c

2

)
+ ln

 c∑
m≥ c2

c!µm

m!(c−m)!

 · (21)

3 Specific examples

The case c = 1 can be easily solved, one finds that

ln(〈NMS〉)
N

=
1
2

ln(2). (22)

This result is easy to understand as the spins form dimers,
each dimer has two possible states corresponding to a
change in the sign of each of the two spins concerned.

The case c = 2 is of interest as when c = 2 the thin
graphs correspond to a collection of large closed chains of
spins. Here we find that

ln(〈NMS〉)
N

= ln

(
1 +
√

5
2

)
· (23)

The number of metastable states in one-dimensional spin
glasses has been studied in the case of a continuous even
probability distribution p(J) for the Jij by Derrida and
Gardner [20] and by Li [21]. In this case one finds the re-
sults ln(〈NMS〉)

N = ln( 4
π ) and 〈ln(NMS)〉

N = ln(2)/3, that is
these two averages are independent of the precise form of
p(J). In the case of the binary distribution studied here
one may carry out the following extremely easy calcula-
tion [21]. Using the notation developed earlier one may
write in one dimension

〈NMS〉 = 2N
〈

N∏
i=1

θ (Ji−1,i + Ji,i+1))

〉
. (24)

Define by Q+(N)/Q−(N) the average number of
metastable states of a one-dimensional spin glass with
N bonds where the last (Nth) bond is taken to be posi-
tive/negative. The boundary conditions at the end of the
chains are taken to be free but this does not change the
result in the thermodynamic limit. By recurrence it is easy
to see that

Q+(N) =
1
2
Q+(N − 1) +

1
2
Q−(N − 1) (25)

Q−(N) =
1
2
Q+(N − 1). (26)
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Fig. 1. ln(〈NMS〉)
N ln(2)

as a function of c the connectivity.

Solving these equations we find in the thermodynamic
limit the result (23). Of course this result is not surpris-
ing as it is clear that the thin graphs generated in the
case c = 2 will generate a number of disconnected loops
of macroscopic size, the additivity of the entropy of the
metastable states ensures the equivalence of the two re-
sults. What is amusing however is that a mean field cal-
culation is capable of reproducing a transfer matrix cal-
culation for a one-dimensional system!

In the case c = 3 the saddle point equations remain
quadratic and one finds that

ln(〈NMS〉)
N

=
1
2

ln
(

8
5

)
· (27)

If one wished to naively mimic a lattice system c = 3
could correspond to a honeycomb lattice is two dimen-
sions. This model has been studied numerically by a
transfer matrix method in [22] and in the case of the
binary bond, distribution considered here it was found
that ln(〈NMS〉)/(N ln(2)) = 0.339 compared to the pre-
diction of (27) which gives 0.33903, leading to the in-
triguing question whether (27) is an exact result. Even
if not an exact result, the random graph approximation
for the honeycomb lattice problem provides a remarkably
accurate result, suggesting that many of the properties of
finite dimensional lattice spin glasses are dominated by
the geometry of their local connectedness and not by their
global topology.

For values of c ≥ 4 one may solve the equations nu-
merically and the results are show in Figure 1. Note that
the higher of the two curves shown corresponds to even
values of c where 〈NMS〉 can be expected to be large as we
have included as metastable states those whose energy is
unaltered or increased when flipping a single spin (i.e. the
marginally metastable states. The two curves tend to the
same limit 0.28743. This is the value obtained in the Sher-
rington Kirkpatrick model by Tanaka and Edwards [6].
However the approach to the two limits is different. In
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the case of c odd the correction is as 1/c as in the case
of the SK model, in this case there are no marginal
metastable state and in the SK model there are almost
surely no marginal metastable states. In the case c even
however there are marginal metastable states and the cor-
rection to the totally connected states is found to be nu-
merically 1/c

1
2 . Here we will demonstrate analytically the

convergence to the SK result.
We may rewrite the action S[µ] as

S[µ] = −1
2
c ln(1 + µ2) + ln(2)

(
1− c

2

)
+ c ln(1 + µ) + ln [F (µ)] (28)

where

F (µ) =
c∑

m≥ c2

c!pmqc−m

m!(c−m)!
(29)

where p = µ
1+µ and q = 1 − p may be interpreted as

the probability of success and failure of a Bernoulli pro-
cess. Using the central limit theorem one may write in
the limit of large c that F [µ] → P (X ≥ 1

2 ) where X is
a Gaussian random variable of mean p and variance pq/c
(we shall see a posteriori that the ansatz on the asymp-
totic behaviour of µ at its saddle point value and the
central limit theorem approximation are consistent to the
same order of approximation). We now make the ansatz
that for c large the saddle point value of µ has the form
µ = 1+a/c

1
2 + lower order terms. Using the central limit

theorem we find

F (µ) =
√

c

2πpq

∫ ∞
1
2

exp
(
− (z − p)2c

2pq

)

=

√
1

2π

∫ ∞
1
2−
√

cp
q

exp
(
−1

2
z2

)
dz. (30)

The ansatz above on µ gives p ∼ 1
2 + a

4c
1
2

giving finally

F (µ) =

√
1

2π

∫ ∞
−a2

exp
(
−1

2
z2

)
dz. (31)

Making the same ansatz throughout the action and devel-
oping to leading order gives

S[a] = ln(2)− a2

8

+ ln

[√
1

2π

∫ ∞
− a2

exp
(
−1

2
z2

)
dz

]
. (32)

Which is exactly the same as the variational equation in [6]
leading to the result for the SK model.

4 Metastable states of fixed energy

Here we shall examine the average of the number of
metastable states NMS(E) of with a given energy E per

−2 −1.5 −1 −0.5 0
E

−1

−0.5

0

0.5

lo
g(

<
N

M
S
(E

)>
)/

N

c=2

c=3

Fig. 2. ln(〈NMS(E)〉)
N for c = 2, c = 3 and c = 4.

spin. To exactly calculate the zero temperature thermo-
dynamic properties of the system on should calculate the
average value of the logarithm of this number, which is
probably not the log of the average value of NMS(E) due
to correlations between states of the same fixed energy
(for example see the discussions in [6,8]), from Jensen’s
inequality however one has the bound 〈ln (NMS(E))〉 ≤
ln (〈NMS(E)〉). We may write NMS(E) as

NMS(E) = Tr
N∏
i=1

δ (H −EN) θ

∑
j 6=i

JijnijSiSj

 . (33)

The calculation now includes an additional integration to
enforce the energy constraint, which amounts to adding
an external uniform field to the fields λ∗i . One finds that

ln(〈NMS(E)〉)
N

= sup
{z+,z−,α}

S∗ [z+, z−, α] (34)

where α is an additional Lagrange multiplier enforcing the
constraint on the energy and

S∗[z+, z−, α] = −z
2
+

2
− z2
−
2

+ ln

 c∑
m≥ c2

zc−m+ zm− e−mα

m!(c−m)!


+ ln(2)

(
1− c

2

)
+

1
2
c (1− ln(2)) + α

( c
2
−E

)
(35)

making the substitution z− = µz+, one may then solve
the stationarity equation for z+ as before to obtain

ln(〈NMS(E)〉)
N

= sup
{µ,α}

S [µ, α] (36)
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where

S [µ, α] = −1
2
c ln(1 + µ2) + ln(2)(1− c

2
)

+ ln

 c∑
m≥ c2

c!µme−αm

m!(c−m)!

+ α
( c

2
−E

)
. (37)

For c ≥ 4 the equations maximising (37) may now be
solved numerically by fixing α and maximising over µ.
The corresponding value for the energy is then given by

E =
c

2

(
1− µ2

∗(α)
1 + µ2

∗(α)

)
(38)

where µ∗(α) is the value of µ is that which maximises (37)
for fixed α.

In the cases c = 2 and c = 3 an analytic solution is
possible; one finds that for c = 2 the support of 〈NMS(E)〉
is (−1, 0) where

ln(〈NMS(E)〉)
N

=
(1−E)

2
ln(1−E)− (1 +E)

2
ln(1 +E)

+E ln(2) +E ln(−E). (39)

In the case c = 3 the support of 〈NMS(E)〉 is (− 3
2 ,−

1
2 )

where

ln(〈NMS(E)〉)
N

= − ln(2)− (3 + 2E)
4

ln(3 + 2E)

+
(3− 2E)

4
ln(3− 2E) +E ln(3)

+
(1 + 2E)

2
ln(−1− 2E). (40)

Hence of the advantages of this model is that one can have
exact analytical expressions for the density of metastable
states in terms of energy (in totally connected mean field
models only a numerical solution is possible).

Defining

E∗ = inf
{
E :

ln(〈NMS(E)〉)
N

= 0
}

(41)

from Jensen’s inequality it is clear that the ground state
energy of the system Eg is bounded from below by E∗,
i.e. Eg ≥ E∗. This value of E∗ is shown in Figure 3 for
values of c up to 30.

5 Conclusion

In conclusion we have seen that in agreement with calcu-
lations to order 1/c, where c is the lattice connectivity for
the Edwards Anderson model, about the mean field Ed-
wards Anderson model, decreasing the local connectivity
increases the average metastable states for a spin glass on
a thin graph (apart from the fluctuations that occur on
going between even and odd connectivities). For realistic

0 10 20 30
c

−5

−4

−3

−2

−1

E
*

Fig. 3. Lower bound E∗ for the groundstate energy Eg as a
function of connectivity c.

values of c (i.e. those that could mimic three-dimensional
lattice structures) one finds an exponentially large average
number of metastable states. Interestingly the calculation
for c = 3 appears to reproduce the numerical calculation
of [22] for the two-dimensional honeycomb lattice.
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